Files
heros/node_modules/crypto-es/lib/cipher-core.js
2024-07-17 16:14:14 +08:00

884 lines
23 KiB
JavaScript

/* eslint-disable no-use-before-define */
import {
Base,
WordArray,
BufferedBlockAlgorithm,
} from './core.js';
import { Base64 } from './enc-base64.js';
import { EvpKDFAlgo } from './evpkdf.js';
/**
* Abstract base cipher template.
*
* @property {number} keySize This cipher's key size. Default: 4 (128 bits)
* @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
* @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
* @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
*/
export class Cipher extends BufferedBlockAlgorithm {
/**
* Initializes a newly created cipher.
*
* @param {number} xformMode Either the encryption or decryption transormation mode constant.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @example
*
* const cipher = CryptoJS.algo.AES.create(
* CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray }
* );
*/
constructor(xformMode, key, cfg) {
super();
/**
* Configuration options.
*
* @property {WordArray} iv The IV to use for this operation.
*/
this.cfg = Object.assign(new Base(), cfg);
// Store transform mode and key
this._xformMode = xformMode;
this._key = key;
// Set initial values
this.reset();
}
/**
* Creates this cipher in encryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* const cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
*/
static createEncryptor(key, cfg) {
return this.create(this._ENC_XFORM_MODE, key, cfg);
}
/**
* Creates this cipher in decryption mode.
*
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {Cipher} A cipher instance.
*
* @static
*
* @example
*
* const cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
*/
static createDecryptor(key, cfg) {
return this.create(this._DEC_XFORM_MODE, key, cfg);
}
/**
* Creates shortcut functions to a cipher's object interface.
*
* @param {Cipher} cipher The cipher to create a helper for.
*
* @return {Object} An object with encrypt and decrypt shortcut functions.
*
* @static
*
* @example
*
* const AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
*/
static _createHelper(SubCipher) {
const selectCipherStrategy = (key) => {
if (typeof key === 'string') {
return PasswordBasedCipher;
}
return SerializableCipher;
};
return {
encrypt(message, key, cfg) {
return selectCipherStrategy(key).encrypt(SubCipher, message, key, cfg);
},
decrypt(ciphertext, key, cfg) {
return selectCipherStrategy(key).decrypt(SubCipher, ciphertext, key, cfg);
},
};
}
/**
* Resets this cipher to its initial state.
*
* @example
*
* cipher.reset();
*/
reset() {
// Reset data buffer
super.reset.call(this);
// Perform concrete-cipher logic
this._doReset();
}
/**
* Adds data to be encrypted or decrypted.
*
* @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
*
* @return {WordArray} The data after processing.
*
* @example
*
* const encrypted = cipher.process('data');
* const encrypted = cipher.process(wordArray);
*/
process(dataUpdate) {
// Append
this._append(dataUpdate);
// Process available blocks
return this._process();
}
/**
* Finalizes the encryption or decryption process.
* Note that the finalize operation is effectively a destructive, read-once operation.
*
* @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
*
* @return {WordArray} The data after final processing.
*
* @example
*
* const encrypted = cipher.finalize();
* const encrypted = cipher.finalize('data');
* const encrypted = cipher.finalize(wordArray);
*/
finalize(dataUpdate) {
// Final data update
if (dataUpdate) {
this._append(dataUpdate);
}
// Perform concrete-cipher logic
const finalProcessedData = this._doFinalize();
return finalProcessedData;
}
}
Cipher._ENC_XFORM_MODE = 1;
Cipher._DEC_XFORM_MODE = 2;
Cipher.keySize = 128 / 32;
Cipher.ivSize = 128 / 32;
/**
* Abstract base stream cipher template.
*
* @property {number} blockSize
*
* The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
*/
export class StreamCipher extends Cipher {
constructor(...args) {
super(...args);
this.blockSize = 1;
}
_doFinalize() {
// Process partial blocks
const finalProcessedBlocks = this._process(!!'flush');
return finalProcessedBlocks;
}
}
/**
* Abstract base block cipher mode template.
*/
export class BlockCipherMode extends Base {
/**
* Initializes a newly created mode.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @example
*
* const mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
*/
constructor(cipher, iv) {
super();
this._cipher = cipher;
this._iv = iv;
}
/**
* Creates this mode for encryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* const mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
*/
static createEncryptor(cipher, iv) {
return this.Encryptor.create(cipher, iv);
}
/**
* Creates this mode for decryption.
*
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
*
* @static
*
* @example
*
* const mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
*/
static createDecryptor(cipher, iv) {
return this.Decryptor.create(cipher, iv);
}
}
function xorBlock(words, offset, blockSize) {
const _words = words;
let block;
// Shortcut
const iv = this._iv;
// Choose mixing block
if (iv) {
block = iv;
// Remove IV for subsequent blocks
this._iv = undefined;
} else {
block = this._prevBlock;
}
// XOR blocks
for (let i = 0; i < blockSize; i += 1) {
_words[offset + i] ^= block[i];
}
}
/**
* Cipher Block Chaining mode.
*/
/**
* Abstract base CBC mode.
*/
export class CBC extends BlockCipherMode {
}
/**
* CBC encryptor.
*/
CBC.Encryptor = class extends CBC {
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock(words, offset) {
// Shortcuts
const cipher = this._cipher;
const { blockSize } = cipher;
// XOR and encrypt
xorBlock.call(this, words, offset, blockSize);
cipher.encryptBlock(words, offset);
// Remember this block to use with next block
this._prevBlock = words.slice(offset, offset + blockSize);
}
};
/**
* CBC decryptor.
*/
CBC.Decryptor = class extends CBC {
/**
* Processes the data block at offset.
*
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
*
* @example
*
* mode.processBlock(data.words, offset);
*/
processBlock(words, offset) {
// Shortcuts
const cipher = this._cipher;
const { blockSize } = cipher;
// Remember this block to use with next block
const thisBlock = words.slice(offset, offset + blockSize);
// Decrypt and XOR
cipher.decryptBlock(words, offset);
xorBlock.call(this, words, offset, blockSize);
// This block becomes the previous block
this._prevBlock = thisBlock;
}
};
/**
* PKCS #5/7 padding strategy.
*/
export const Pkcs7 = {
/**
* Pads data using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to pad.
* @param {number} blockSize The multiple that the data should be padded to.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.pad(wordArray, 4);
*/
pad(data, blockSize) {
// Shortcut
const blockSizeBytes = blockSize * 4;
// Count padding bytes
const nPaddingBytes = blockSizeBytes - (data.sigBytes % blockSizeBytes);
// Create padding word
const paddingWord = (nPaddingBytes << 24)
| (nPaddingBytes << 16)
| (nPaddingBytes << 8)
| nPaddingBytes;
// Create padding
const paddingWords = [];
for (let i = 0; i < nPaddingBytes; i += 4) {
paddingWords.push(paddingWord);
}
const padding = WordArray.create(paddingWords, nPaddingBytes);
// Add padding
data.concat(padding);
},
/**
* Unpads data that had been padded using the algorithm defined in PKCS #5/7.
*
* @param {WordArray} data The data to unpad.
*
* @static
*
* @example
*
* CryptoJS.pad.Pkcs7.unpad(wordArray);
*/
unpad(data) {
const _data = data;
// Get number of padding bytes from last byte
const nPaddingBytes = _data.words[(_data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
_data.sigBytes -= nPaddingBytes;
},
};
/**
* Abstract base block cipher template.
*
* @property {number} blockSize
*
* The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
*/
export class BlockCipher extends Cipher {
constructor(xformMode, key, cfg) {
/**
* Configuration options.
*
* @property {Mode} mode The block mode to use. Default: CBC
* @property {Padding} padding The padding strategy to use. Default: Pkcs7
*/
super(xformMode, key, Object.assign(
{
mode: CBC,
padding: Pkcs7,
},
cfg,
));
this.blockSize = 128 / 32;
}
reset() {
let modeCreator;
// Reset cipher
super.reset.call(this);
// Shortcuts
const { cfg } = this;
const { iv, mode } = cfg;
// Reset block mode
if (this._xformMode === this.constructor._ENC_XFORM_MODE) {
modeCreator = mode.createEncryptor;
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
modeCreator = mode.createDecryptor;
// Keep at least one block in the buffer for unpadding
this._minBufferSize = 1;
}
this._mode = modeCreator.call(mode, this, iv && iv.words);
this._mode.__creator = modeCreator;
}
_doProcessBlock(words, offset) {
this._mode.processBlock(words, offset);
}
_doFinalize() {
let finalProcessedBlocks;
// Shortcut
const { padding } = this.cfg;
// Finalize
if (this._xformMode === this.constructor._ENC_XFORM_MODE) {
// Pad data
padding.pad(this._data, this.blockSize);
// Process final blocks
finalProcessedBlocks = this._process(!!'flush');
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
// Process final blocks
finalProcessedBlocks = this._process(!!'flush');
// Unpad data
padding.unpad(finalProcessedBlocks);
}
return finalProcessedBlocks;
}
}
/**
* A collection of cipher parameters.
*
* @property {WordArray} ciphertext The raw ciphertext.
* @property {WordArray} key The key to this ciphertext.
* @property {WordArray} iv The IV used in the ciphering operation.
* @property {WordArray} salt The salt used with a key derivation function.
* @property {Cipher} algorithm The cipher algorithm.
* @property {Mode} mode The block mode used in the ciphering operation.
* @property {Padding} padding The padding scheme used in the ciphering operation.
* @property {number} blockSize The block size of the cipher.
* @property {Format} formatter
* The default formatting strategy to convert this cipher params object to a string.
*/
export class CipherParams extends Base {
/**
* Initializes a newly created cipher params object.
*
* @param {Object} cipherParams An object with any of the possible cipher parameters.
*
* @example
*
* var cipherParams = CryptoJS.lib.CipherParams.create({
* ciphertext: ciphertextWordArray,
* key: keyWordArray,
* iv: ivWordArray,
* salt: saltWordArray,
* algorithm: CryptoJS.algo.AES,
* mode: CryptoJS.mode.CBC,
* padding: CryptoJS.pad.PKCS7,
* blockSize: 4,
* formatter: CryptoJS.format.OpenSSL
* });
*/
constructor(cipherParams) {
super();
this.mixIn(cipherParams);
}
/**
* Converts this cipher params object to a string.
*
* @param {Format} formatter (Optional) The formatting strategy to use.
*
* @return {string} The stringified cipher params.
*
* @throws Error If neither the formatter nor the default formatter is set.
*
* @example
*
* var string = cipherParams + '';
* var string = cipherParams.toString();
* var string = cipherParams.toString(CryptoJS.format.OpenSSL);
*/
toString(formatter) {
return (formatter || this.formatter).stringify(this);
}
}
/**
* OpenSSL formatting strategy.
*/
export const OpenSSLFormatter = {
/**
* Converts a cipher params object to an OpenSSL-compatible string.
*
* @param {CipherParams} cipherParams The cipher params object.
*
* @return {string} The OpenSSL-compatible string.
*
* @static
*
* @example
*
* var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
*/
stringify(cipherParams) {
let wordArray;
// Shortcuts
const { ciphertext, salt } = cipherParams;
// Format
if (salt) {
wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
} else {
wordArray = ciphertext;
}
return wordArray.toString(Base64);
},
/**
* Converts an OpenSSL-compatible string to a cipher params object.
*
* @param {string} openSSLStr The OpenSSL-compatible string.
*
* @return {CipherParams} The cipher params object.
*
* @static
*
* @example
*
* var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
*/
parse(openSSLStr) {
let salt;
// Parse base64
const ciphertext = Base64.parse(openSSLStr);
// Shortcut
const ciphertextWords = ciphertext.words;
// Test for salt
if (ciphertextWords[0] === 0x53616c74 && ciphertextWords[1] === 0x65645f5f) {
// Extract salt
salt = WordArray.create(ciphertextWords.slice(2, 4));
// Remove salt from ciphertext
ciphertextWords.splice(0, 4);
ciphertext.sigBytes -= 16;
}
return CipherParams.create({ ciphertext, salt });
},
};
/**
* A cipher wrapper that returns ciphertext as a serializable cipher params object.
*/
export class SerializableCipher extends Base {
/**
* Encrypts a message.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher
* .encrypt(CryptoJS.algo.AES, message, key);
* var ciphertextParams = CryptoJS.lib.SerializableCipher
* .encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
* var ciphertextParams = CryptoJS.lib.SerializableCipher
* .encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
*/
static encrypt(cipher, message, key, cfg) {
// Apply config defaults
const _cfg = Object.assign(new Base(), this.cfg, cfg);
// Encrypt
const encryptor = cipher.createEncryptor(key, _cfg);
const ciphertext = encryptor.finalize(message);
// Shortcut
const cipherCfg = encryptor.cfg;
// Create and return serializable cipher params
return CipherParams.create({
ciphertext,
key,
iv: cipherCfg.iv,
algorithm: cipher,
mode: cipherCfg.mode,
padding: cipherCfg.padding,
blockSize: encryptor.blockSize,
formatter: _cfg.format,
});
}
/**
* Decrypts serialized ciphertext.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.SerializableCipher
* .decrypt(CryptoJS.algo.AES, formattedCiphertext, key,
* { iv: iv, format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.SerializableCipher
* .decrypt(CryptoJS.algo.AES, ciphertextParams, key,
* { iv: iv, format: CryptoJS.format.OpenSSL });
*/
static decrypt(cipher, ciphertext, key, cfg) {
let _ciphertext = ciphertext;
// Apply config defaults
const _cfg = Object.assign(new Base(), this.cfg, cfg);
// Convert string to CipherParams
_ciphertext = this._parse(_ciphertext, _cfg.format);
// Decrypt
const plaintext = cipher.createDecryptor(key, _cfg).finalize(_ciphertext.ciphertext);
return plaintext;
}
/**
* Converts serialized ciphertext to CipherParams,
* else assumed CipherParams already and returns ciphertext unchanged.
*
* @param {CipherParams|string} ciphertext The ciphertext.
* @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
*
* @return {CipherParams} The unserialized ciphertext.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.SerializableCipher
* ._parse(ciphertextStringOrParams, format);
*/
static _parse(ciphertext, format) {
if (typeof ciphertext === 'string') {
return format.parse(ciphertext, this);
}
return ciphertext;
}
}
/**
* Configuration options.
*
* @property {Formatter} format
*
* The formatting strategy to convert cipher param objects to and from a string.
* Default: OpenSSL
*/
SerializableCipher.cfg = Object.assign(
new Base(),
{ format: OpenSSLFormatter },
);
/**
* OpenSSL key derivation function.
*/
export const OpenSSLKdf = {
/**
* Derives a key and IV from a password.
*
* @param {string} password The password to derive from.
* @param {number} keySize The size in words of the key to generate.
* @param {number} ivSize The size in words of the IV to generate.
* @param {WordArray|string} salt
* (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
*
* @return {CipherParams} A cipher params object with the key, IV, and salt.
*
* @static
*
* @example
*
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
*/
execute(password, keySize, ivSize, salt, hasher) {
let _salt = salt;
// Generate random salt
if (!_salt) {
_salt = WordArray.random(64 / 8);
}
// Derive key and IV
let key;
if (!hasher) {
key = EvpKDFAlgo.create({ keySize: keySize + ivSize }).compute(password, _salt);
} else {
key = EvpKDFAlgo.create({ keySize: keySize + ivSize, hasher }).compute(password, _salt);
}
// Separate key and IV
const iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
key.sigBytes = keySize * 4;
// Return params
return CipherParams.create({ key, iv, salt: _salt });
},
};
/**
* A serializable cipher wrapper that derives the key from a password,
* and returns ciphertext as a serializable cipher params object.
*/
export class PasswordBasedCipher extends SerializableCipher {
/**
* Encrypts a message using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {CipherParams} A cipher params object.
*
* @static
*
* @example
*
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher
* .encrypt(CryptoJS.algo.AES, message, 'password');
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher
* .encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
*/
static encrypt(cipher, message, password, cfg) {
// Apply config defaults
const _cfg = Object.assign(new Base(), this.cfg, cfg);
// Derive key and other params
const derivedParams = _cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, _cfg.salt, _cfg.hasher);
// Add IV to config
_cfg.iv = derivedParams.iv;
// Encrypt
const ciphertext = SerializableCipher.encrypt
.call(this, cipher, message, derivedParams.key, _cfg);
// Mix in derived params
ciphertext.mixIn(derivedParams);
return ciphertext;
}
/**
* Decrypts serialized ciphertext using a password.
*
* @param {Cipher} cipher The cipher algorithm to use.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @param {string} password The password.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
*
* @return {WordArray} The plaintext.
*
* @static
*
* @example
*
* var plaintext = CryptoJS.lib.PasswordBasedCipher
* .decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password',
* { format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.PasswordBasedCipher
* .decrypt(CryptoJS.algo.AES, ciphertextParams, 'password',
* { format: CryptoJS.format.OpenSSL });
*/
static decrypt(cipher, ciphertext, password, cfg) {
let _ciphertext = ciphertext;
// Apply config defaults
const _cfg = Object.assign(new Base(), this.cfg, cfg);
// Convert string to CipherParams
_ciphertext = this._parse(_ciphertext, _cfg.format);
// Derive key and other params
const derivedParams = _cfg.kdf
.execute(password, cipher.keySize, cipher.ivSize, _ciphertext.salt, _cfg.hasher);
// Add IV to config
_cfg.iv = derivedParams.iv;
// Decrypt
const plaintext = SerializableCipher.decrypt
.call(this, cipher, _ciphertext, derivedParams.key, _cfg);
return plaintext;
}
}
/**
* Configuration options.
*
* @property {KDF} kdf
* The key derivation function to use to generate a key and IV from a password.
* Default: OpenSSL
*/
PasswordBasedCipher.cfg = Object.assign(SerializableCipher.cfg, { kdf: OpenSSLKdf });