Files
2024-07-17 16:14:14 +08:00

279 lines
6.9 KiB
JavaScript

import {
BlockCipher,
} from './cipher-core.js';
// Lookup tables
const _SBOX = [];
const INV_SBOX = [];
const _SUB_MIX_0 = [];
const _SUB_MIX_1 = [];
const _SUB_MIX_2 = [];
const _SUB_MIX_3 = [];
const INV_SUB_MIX_0 = [];
const INV_SUB_MIX_1 = [];
const INV_SUB_MIX_2 = [];
const INV_SUB_MIX_3 = [];
// Compute lookup tables
// Compute double table
const d = [];
for (let i = 0; i < 256; i += 1) {
if (i < 128) {
d[i] = i << 1;
} else {
d[i] = (i << 1) ^ 0x11b;
}
}
// Walk GF(2^8)
let x = 0;
let xi = 0;
for (let i = 0; i < 256; i += 1) {
// Compute sbox
let sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
_SBOX[x] = sx;
INV_SBOX[sx] = x;
// Compute multiplication
const x2 = d[x];
const x4 = d[x2];
const x8 = d[x4];
// Compute sub bytes, mix columns tables
let t = (d[sx] * 0x101) ^ (sx * 0x1010100);
_SUB_MIX_0[x] = (t << 24) | (t >>> 8);
_SUB_MIX_1[x] = (t << 16) | (t >>> 16);
_SUB_MIX_2[x] = (t << 8) | (t >>> 24);
_SUB_MIX_3[x] = t;
// Compute inv sub bytes, inv mix columns tables
t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
INV_SUB_MIX_3[sx] = t;
// Compute next counter
if (!x) {
xi = 1;
x = xi;
} else {
x = x2 ^ d[d[d[x8 ^ x2]]];
xi ^= d[d[xi]];
}
}
// Precomputed Rcon lookup
const RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
/**
* AES block cipher algorithm.
*/
export class AESAlgo extends BlockCipher {
_doReset() {
let t;
// Skip reset of nRounds has been set before and key did not change
if (this._nRounds && this._keyPriorReset === this._key) {
return;
}
// Shortcuts
this._keyPriorReset = this._key;
const key = this._keyPriorReset;
const keyWords = key.words;
const keySize = key.sigBytes / 4;
// Compute number of rounds
this._nRounds = keySize + 6;
const nRounds = this._nRounds;
// Compute number of key schedule rows
const ksRows = (nRounds + 1) * 4;
// Compute key schedule
this._keySchedule = [];
const keySchedule = this._keySchedule;
for (let ksRow = 0; ksRow < ksRows; ksRow += 1) {
if (ksRow < keySize) {
keySchedule[ksRow] = keyWords[ksRow];
} else {
t = keySchedule[ksRow - 1];
if (!(ksRow % keySize)) {
// Rot word
t = (t << 8) | (t >>> 24);
// Sub word
t = (_SBOX[t >>> 24] << 24)
| (_SBOX[(t >>> 16) & 0xff] << 16)
| (_SBOX[(t >>> 8) & 0xff] << 8)
| _SBOX[t & 0xff];
// Mix Rcon
t ^= RCON[(ksRow / keySize) | 0] << 24;
} else if (keySize > 6 && ksRow % keySize === 4) {
// Sub word
t = (_SBOX[t >>> 24] << 24)
| (_SBOX[(t >>> 16) & 0xff] << 16)
| (_SBOX[(t >>> 8) & 0xff] << 8)
| _SBOX[t & 0xff];
}
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
}
}
// Compute inv key schedule
this._invKeySchedule = [];
const invKeySchedule = this._invKeySchedule;
for (let invKsRow = 0; invKsRow < ksRows; invKsRow += 1) {
const ksRow = ksRows - invKsRow;
if (invKsRow % 4) {
t = keySchedule[ksRow];
} else {
t = keySchedule[ksRow - 4];
}
if (invKsRow < 4 || ksRow <= 4) {
invKeySchedule[invKsRow] = t;
} else {
invKeySchedule[invKsRow] = INV_SUB_MIX_0[_SBOX[t >>> 24]]
^ INV_SUB_MIX_1[_SBOX[(t >>> 16) & 0xff]]
^ INV_SUB_MIX_2[_SBOX[(t >>> 8) & 0xff]]
^ INV_SUB_MIX_3[_SBOX[t & 0xff]];
}
}
}
encryptBlock(M, offset) {
this._doCryptBlock(
M, offset, this._keySchedule, _SUB_MIX_0, _SUB_MIX_1, _SUB_MIX_2, _SUB_MIX_3, _SBOX,
);
}
decryptBlock(M, offset) {
const _M = M;
// Swap 2nd and 4th rows
let t = _M[offset + 1];
_M[offset + 1] = _M[offset + 3];
_M[offset + 3] = t;
this._doCryptBlock(
_M,
offset,
this._invKeySchedule,
INV_SUB_MIX_0,
INV_SUB_MIX_1,
INV_SUB_MIX_2,
INV_SUB_MIX_3,
INV_SBOX,
);
// Inv swap 2nd and 4th rows
t = _M[offset + 1];
_M[offset + 1] = _M[offset + 3];
_M[offset + 3] = t;
}
_doCryptBlock(M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
const _M = M;
// Shortcut
const nRounds = this._nRounds;
// Get input, add round key
let s0 = _M[offset] ^ keySchedule[0];
let s1 = _M[offset + 1] ^ keySchedule[1];
let s2 = _M[offset + 2] ^ keySchedule[2];
let s3 = _M[offset + 3] ^ keySchedule[3];
// Key schedule row counter
let ksRow = 4;
// Rounds
for (let round = 1; round < nRounds; round += 1) {
// Shift rows, sub bytes, mix columns, add round key
const t0 = SUB_MIX_0[s0 >>> 24]
^ SUB_MIX_1[(s1 >>> 16) & 0xff]
^ SUB_MIX_2[(s2 >>> 8) & 0xff]
^ SUB_MIX_3[s3 & 0xff]
^ keySchedule[ksRow];
ksRow += 1;
const t1 = SUB_MIX_0[s1 >>> 24]
^ SUB_MIX_1[(s2 >>> 16) & 0xff]
^ SUB_MIX_2[(s3 >>> 8) & 0xff]
^ SUB_MIX_3[s0 & 0xff]
^ keySchedule[ksRow];
ksRow += 1;
const t2 = SUB_MIX_0[s2 >>> 24]
^ SUB_MIX_1[(s3 >>> 16) & 0xff]
^ SUB_MIX_2[(s0 >>> 8) & 0xff]
^ SUB_MIX_3[s1 & 0xff]
^ keySchedule[ksRow];
ksRow += 1;
const t3 = SUB_MIX_0[s3 >>> 24]
^ SUB_MIX_1[(s0 >>> 16) & 0xff]
^ SUB_MIX_2[(s1 >>> 8) & 0xff]
^ SUB_MIX_3[s2 & 0xff]
^ keySchedule[ksRow];
ksRow += 1;
// Update state
s0 = t0;
s1 = t1;
s2 = t2;
s3 = t3;
}
// Shift rows, sub bytes, add round key
const t0 = (
(SBOX[s0 >>> 24] << 24)
| (SBOX[(s1 >>> 16) & 0xff] << 16)
| (SBOX[(s2 >>> 8) & 0xff] << 8)
| SBOX[s3 & 0xff]
) ^ keySchedule[ksRow];
ksRow += 1;
const t1 = (
(SBOX[s1 >>> 24] << 24)
| (SBOX[(s2 >>> 16) & 0xff] << 16)
| (SBOX[(s3 >>> 8) & 0xff] << 8)
| SBOX[s0 & 0xff]
) ^ keySchedule[ksRow];
ksRow += 1;
const t2 = (
(SBOX[s2 >>> 24] << 24)
| (SBOX[(s3 >>> 16) & 0xff] << 16)
| (SBOX[(s0 >>> 8) & 0xff] << 8)
| SBOX[s1 & 0xff]
) ^ keySchedule[ksRow];
ksRow += 1;
const t3 = (
(SBOX[s3 >>> 24] << 24)
| (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]
) ^ keySchedule[ksRow];
ksRow += 1;
// Set output
_M[offset] = t0;
_M[offset + 1] = t1;
_M[offset + 2] = t2;
_M[offset + 3] = t3;
}
}
AESAlgo.keySize = 256 / 32;
/**
* Shortcut functions to the cipher's object interface.
*
* @example
*
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
*/
export const AES = BlockCipher._createHelper(AESAlgo);